・\(z+\overline{z}=(x+\cancel{iy})+(x-\cancel{iy})=2x=2Re(z), Re(z)=\frac{z+\overline{z}}{2}\)
・\(z-\overline{z}=(\cancel{x}+iy)-(\cancel{x}-iy)=2iy=2iIm(z), Im(z)=\frac{z-\overline{z}}{2i}\)
・\(\overline{(\overline{z})}=\overline{(\overline{x+iy})}=\overline{x-iy}=x+iy=z\)
・\(|\overline{z}|=|x-iy|=\sqrt{x^2+(-y)^2}=\sqrt{x^2+y^2}=|x+iy|=|z|\)
・\(z\overline{z}=(x\cdot x-y\cdot(-y))+i(x\cdot(-y)+y\cdot x)\)
\(=(x^2+y^2)+i(-xy+yx)=x^2+y^2=|z|^2\)
・\(z_1=x_1+iy_1, z_2=x_2+iy_2\) とすると \(\overline{z}_1=x_1-iy_1, \overline{z}_2=x_2-iy_2\) となる。
・\(\overline{z_1\pm z_2}=\overline{(x_1\pm x_2)+i(y_1\pm y_2)}=(x_1\pm x_2)-i(y_1\pm y_2)\)
\(=(x_1-iy_1)\pm (x_2-iy_2)=\overline{z}_1\pm \overline{z}_2\)
・\(\overline{z_1z_2}=\overline{(x_1+iy_1)(x_2+iy_2)}=\overline{(x_1x_2-y_1y_2)+i(x_1y_2+y_1x_2)}\)
\(=(x_1x_2-y_1y_2)-i(x_1y_2+y_1x_2)=(x_1x_2-(-y_1)(-y_2))+i(x_1(-y_2)+(-y_1)x_2)\)
\(=(x_1-iy_1)(x_2-iy_2)=\overline{z_1}\overline{z_2}\)
・\(\displaystyle\overline{\left(\frac{z_2}{z_1}\right)}=\overline{\left(\frac{x_2+iy_2}{x_1+iy_1}\right)}=\overline{\frac{x_1x_2+y_1y_2}{x_1^2+y_1^2}+i\frac{x_1y_2-x_2y_1}{x_1^2+y_1^2}}=\displaystyle\frac{x_1x_2+y_1y_2}{x_1^2+y_1^2}-i\frac{x_1y_2-x_2y_1}{x_1^2+y_1^2}\)
\(\displaystyle=\frac{x_1x_2+(-y_1)(-y_2)}{x_1^2+(-y_1)^2}+i\frac{x_1(-y_2)-x_2(-y_1)}{x_1^2+(-y_1)^2}=\frac{\overline{z_2}}{\overline{z_1}}\)
・\(|z_1z_2|=|(x_1+iy_1)(x_2+iy_2)|=|(x_1x_2-y_1y_2)+i(x_1y_2+x_2y_1)|\)
\(=\sqrt{(x_1x_2-y_1y_2)^2+(x_1y_2+x_2y_1)^2}\)
\(=\sqrt{x_1^2x_2^2\cancel{-2x_1x_2y_1y_2}+y_1^2y_2^2+x_1^2y_2^2+\cancel{2x_1y_2x_2y_1}+x_2^2y_1^2}\)
\(=\sqrt{x_1^2(x_2^2+y_2^2)+y_1^2(x_2^2+y_2^2)}=\sqrt{(x_1^2+y_1^2)(x_2^2+y_2^2)}\)
\(=\sqrt{x_1^2+y_1^2}\sqrt{x_2^2+y_2^2}=|z_1||z_2|\)
・\(\displaystyle\left|\frac{z_2}{z_1}\right|=\left|\frac{x_2+iy_2}{x_1+iy_1}\right|=\left|\frac{x_1x_2+y_1y_2}{x_1^2+y_1^2}+i\frac{x_1y_2-x_2y_1}{x_1^2+y_1^2}\right|=\sqrt{\left(\frac{x_1x_2+y_1y_2}{x_1^2+y_1^2}\right)^2+\left(\frac{x_1y_2-x_2y_1}{x_1^2+y_1^2}\right)^2}\)
\(\displaystyle=\sqrt{\frac{(x_1x_2+y_1y_2)^2+(x_1y_2-x_2y_1)^2}{(x_1^2+y_1^2)^2}}\)
\(\displaystyle=\sqrt{\frac{x_1^2x_2^2+\cancel{2x_1x_2y_1y_2}+y_1^2y_2^2+x_1^2y_2^2\cancel{-2x_1y_2x_2y_1}+x_2^2y_1^2}{(x_1^2+y_1^2)^2}}\)
\(\displaystyle=\sqrt{\frac{x_1^2(x_2^2+y_2^2)+y_1^2(y_2^2+x_2^2)}{(x_1^2+x_1^2)^2}}=\sqrt{\frac{\cancel{(x_1^2+y_1^2)}(x_2^2+y_2^2)}{(x_1^2+y_1^2)^{\cancel{2}}}}=\frac{\sqrt{x_2^2+y_2^2}}{\sqrt{x_1^2+y_1^2}}=\frac{|z_2|}{|z_1|}\)
(準備)
・\(|z_1|=\sqrt{x_1^2+y_1^2}, |z_2|=\sqrt{x_2^2+y_2^2}\)
・\(\langle z_1,z_2 \rangle = x_1x_2+y_1y_2\)
(シュワルツの不等式)
・\((|z_1||z_2|)^2 - \langle z_1,z_2 \rangle^2 = \left(\sqrt{x_1^2+y_1^2}\sqrt{x_2^2+y_2^2}\right)^2-(x_1x_2 + y_1y_2)^2\)
\(=(x_1^2+y_1^2)(x_2^2+y_2^2)-(x_1x_2 + y_1y_2)^2\)
\(=\cancel{x_1^2x_2^2}+x_1^2y_2^2+y_1^2x_2^2+\cancel{y_1^2y_2^2}-\cancel{x_1^2x_2^2}-2x_1x_2y_1y_2-\cancel{y_1^2y_2^2}\)
\(=x_1^2y_2^2-2x_1x_2y_1y_2+y_1^2x_2^2\)
\(=(x_1y_2 - y_1x_2)^2 \geq 0\)
\(\therefore (|z_1||z_2|)^2 \geq \langle z_1,z_2 \rangle^2\)
\(\therefore \big||z_1||z_2|\big| \geq \big|\langle z_1,z_2\rangle\big|\)
・\(|z_1|\geq 0, |z_2|\geq 0\) なので, 外側の絶対値は外せる。 \(\big||z_1||z_2|\big|=|z_1||z_2|\)
・\(\langle z_1,z_2 \rangle\) は正の場合も, 負の場合もあるので絶対値は必要。
\(|z_1||z_2|\geq +|\langle z_1,z_2 \rangle | \geq -|\langle z_1,z_2 \rangle |\)
\(|z_1||z_2|\geq \pm|\langle z_1,z_2 \rangle |\)
\(|z_1||z_2|\geq \mp|\langle z_1,z_2 \rangle |\)・・・ 移項して \(\pm\) にしたい場合
①\(|z_1\pm z_2|\leq |z_1|+|z_2|\) の証明
・\((|z_1|+|z_2|)^2-|z_1\pm z_2|^2\)
\(=|z_1|^2+2|z_1||z_2|+|z_2|^2-|z_1\pm z_2|^2\)
\(=x_1^2+y_1^2+2\sqrt{x_1^2+y_1^2}\sqrt{x_2^2+y_2^2}+x_2^2+y_2^2-(x_1\pm x_2)^2-(y_1\pm y_2)^2\)
\(=\cancel{x_1^2}+\cancel{y_1^2}+2\sqrt{x_1^2+y_1^2}\sqrt{x_2^2+y_2^2}+\cancel{x_2^2}+\cancel{y_2^2}\)
\(-(\cancel{x_1^2}\pm 2x_1x_2+\cancel{x_2^2})-(\cancel{y_1^2} \pm 2y_1y_2 +\cancel{y_2^2})\)
\(=2\left\{\sqrt{x_1^2+y_1^2}\sqrt{x_2^2+y_2^2}\pm (x_1x_2 + y_1y_2)\right\}\)
\(=2\{|z_1||z_2|\pm \langle z_1,z_2\rangle\} \geq 0\)
\(\therefore |z_1|+|z_2| \geq |z_1\pm z_2|\)
②\(||z_1|-|z_2|| \leq |z_1\pm z_2|\) の証明
・\(|z_1\pm z_2|^2 - ||z_1|-|z_2||^2\)
\(=(x_1\pm x_2)^2+(y_1\pm y_2)^2-\left(\sqrt{x_1^2+y_1^2}-\sqrt{x_2^2+y_2^2}\right)^2\)
\(=\cancel{x_1^2}\pm 2x_1x_2+\cancel{x_2^2}+\cancel{y_1^2}\pm 2y_1y_2+\cancel{y_2^2}\)
\(-(\cancel{x_1^2}+\cancel{y_1^2}-2\sqrt{x_1^2+y_1^2}\sqrt{x_2^2+y_2^2}+\cancel{x_2^2}+\cancel{y_2^2})\)
\(=2\left\{\sqrt{x_1^2+y_1^2}\sqrt{x_2^2+y_2^2}\pm (x_1x_2+y_1y_2)\right\}\)
\(=2\{|z_1||z_2|\pm\langle z_1,z_2\rangle\} \geq 0\)
\(\therefore |z_1\pm z_2| \geq ||z_1|-|z_2||\)