1.1 複素平面

絶対値、共役複素数に関する公式の証明

・\(z=x+iy, \overline{z}=x-iy\) とする

(5) \(z+\overline{z}=2Re(z), z-\overline{z}=2iIm(z)\)

・\(z+\overline{z}=(x+\cancel{iy})+(x-\cancel{iy})=2x=2Re(z),  Re(z)=\frac{z+\overline{z}}{2}\)

・\(z-\overline{z}=(\cancel{x}+iy)-(\cancel{x}-iy)=2iy=2iIm(z),  Im(z)=\frac{z-\overline{z}}{2i}\)

(6) \(\overline{(\overline{z})}=z, |z|=|\overline{z}|, z\overline{z}=|z|^2\)

・\(\overline{(\overline{z})}=\overline{(\overline{x+iy})}=\overline{x-iy}=x+iy=z\)

・\(|\overline{z}|=|x-iy|=\sqrt{x^2+(-y)^2}=\sqrt{x^2+y^2}=|x+iy|=|z|\)

・\(z\overline{z}=(x\cdot x-y\cdot(-y))+i(x\cdot(-y)+y\cdot x)\)
   \(=(x^2+y^2)+i(-xy+yx)=x^2+y^2=|z|^2\)


・\(z_1=x_1+iy_1, \overline{z}_1=x_1-iy_1\)
 \(z_2=x_2+iy_2, \overline{z}_2=x_2-iy_2\)
 とする

(7) \(\overline{z_1\pm z_2}=\overline{z}_1\pm \overline{z}_2, \overline{z_1z_2}=\overline{z}_1\overline{z}_2, \overline{\left(\displaystyle\frac{z_2}{z_1}\right)}=\displaystyle\frac{\overline{z}_2}{\overline{z}_1} (z_1\neq 0)\)

・\(z_1=x_1+iy_1, z_2=x_2+iy_2\) とすると \(\overline{z}_1=x_1-iy_1, \overline{z}_2=x_2-iy_2\) となる。

・\(\overline{z_1\pm z_2}=\overline{(x_1\pm x_2)+i(y_1\pm y_2)}=(x_1\pm x_2)-i(y_1\pm y_2)\)
  \(=(x_1-iy_1)\pm (x_2-iy_2)=\overline{z}_1\pm \overline{z}_2\)

・\(\overline{z_1z_2}=\overline{(x_1+iy_1)(x_2+iy_2)}=\overline{(x_1x_2-y_1y_2)+i(x_1y_2+y_1x_2)}\)
  \(=(x_1x_2-y_1y_2)-i(x_1y_2+y_1x_2)=(x_1x_2-(-y_1)(-y_2))+i(x_1(-y_2)+(-y_1)x_2)\)
  \(=(x_1-iy_1)(x_2-iy_2)=\overline{z_1}\overline{z_2}\)

・\(\displaystyle\overline{\left(\frac{z_2}{z_1}\right)}=\overline{\left(\frac{x_2+iy_2}{x_1+iy_1}\right)}=\overline{\frac{x_1x_2+y_1y_2}{x_1^2+y_1^2}+i\frac{x_1y_2-x_2y_1}{x_1^2+y_1^2}}=\displaystyle\frac{x_1x_2+y_1y_2}{x_1^2+y_1^2}-i\frac{x_1y_2-x_2y_1}{x_1^2+y_1^2}\)

  \(\displaystyle=\frac{x_1x_2+(-y_1)(-y_2)}{x_1^2+(-y_1)^2}+i\frac{x_1(-y_2)-x_2(-y_1)}{x_1^2+(-y_1)^2}=\frac{\overline{z_2}}{\overline{z_1}}\)

(8) \(\displaystyle|z_1z_2|=|z_1||z_2|, \left|\frac{z_2}{z_1}\right|=\frac{|z_2|}{|z_1|} (z_1 \neq 0)\)

・\(|z_1z_2|=|(x_1+iy_1)(x_2+iy_2)|=|(x_1x_2-y_1y_2)+i(x_1y_2+x_2y_1)|\)

  \(=\sqrt{(x_1x_2-y_1y_2)^2+(x_1y_2+x_2y_1)^2}\)

  \(=\sqrt{x_1^2x_2^2\cancel{-2x_1x_2y_1y_2}+y_1^2y_2^2+x_1^2y_2^2+\cancel{2x_1y_2x_2y_1}+x_2^2y_1^2}\)

  \(=\sqrt{x_1^2(x_2^2+y_2^2)+y_1^2(x_2^2+y_2^2)}=\sqrt{(x_1^2+y_1^2)(x_2^2+y_2^2)}\)

  \(=\sqrt{x_1^2+y_1^2}\sqrt{x_2^2+y_2^2}=|z_1||z_2|\)

・\(\displaystyle\left|\frac{z_2}{z_1}\right|=\left|\frac{x_2+iy_2}{x_1+iy_1}\right|=\left|\frac{x_1x_2+y_1y_2}{x_1^2+y_1^2}+i\frac{x_1y_2-x_2y_1}{x_1^2+y_1^2}\right|=\sqrt{\left(\frac{x_1x_2+y_1y_2}{x_1^2+y_1^2}\right)^2+\left(\frac{x_1y_2-x_2y_1}{x_1^2+y_1^2}\right)^2}\)

  \(\displaystyle=\sqrt{\frac{(x_1x_2+y_1y_2)^2+(x_1y_2-x_2y_1)^2}{(x_1^2+y_1^2)^2}}\)

  \(\displaystyle=\sqrt{\frac{x_1^2x_2^2+\cancel{2x_1x_2y_1y_2}+y_1^2y_2^2+x_1^2y_2^2\cancel{-2x_1y_2x_2y_1}+x_2^2y_1^2}{(x_1^2+y_1^2)^2}}\)

  \(\displaystyle=\sqrt{\frac{x_1^2(x_2^2+y_2^2)+y_1^2(y_2^2+x_2^2)}{(x_1^2+x_1^2)^2}}=\sqrt{\frac{\cancel{(x_1^2+y_1^2)}(x_2^2+y_2^2)}{(x_1^2+y_1^2)^{\cancel{2}}}}=\frac{\sqrt{x_2^2+y_2^2}}{\sqrt{x_1^2+y_1^2}}=\frac{|z_2|}{|z_1|}\)

(9) \(||z_1|-|z_2|| \leq |z_1\pm z_2| \leq |z_1|+|z_2|\) (三角不等式)

(準備)
・\(|z_1|=\sqrt{x_1^2+y_1^2}, |z_2|=\sqrt{x_2^2+y_2^2}\)
・\(\langle z_1,z_2 \rangle = x_1x_2+y_1y_2\)

(シュワルツの不等式)
・\((|z_1||z_2|)^2 - \langle z_1,z_2 \rangle^2 = \left(\sqrt{x_1^2+y_1^2}\sqrt{x_2^2+y_2^2}\right)^2-(x_1x_2 + y_1y_2)^2\)
 \(=(x_1^2+y_1^2)(x_2^2+y_2^2)-(x_1x_2 + y_1y_2)^2\)
 \(=\cancel{x_1^2x_2^2}+x_1^2y_2^2+y_1^2x_2^2+\cancel{y_1^2y_2^2}-\cancel{x_1^2x_2^2}-2x_1x_2y_1y_2-\cancel{y_1^2y_2^2}\)
 \(=x_1^2y_2^2-2x_1x_2y_1y_2+y_1^2x_2^2\)
 \(=(x_1y_2 - y_1x_2)^2 \geq 0\)

 \(\therefore (|z_1||z_2|)^2 \geq \langle z_1,z_2 \rangle^2\)
 \(\therefore \big||z_1||z_2|\big| \geq \big|\langle z_1,z_2\rangle\big|\)
  ・\(|z_1|\geq 0, |z_2|\geq 0\) なので, 外側の絶対値は外せる。 \(\big||z_1||z_2|\big|=|z_1||z_2|\)
  ・\(\langle z_1,z_2 \rangle\) は正の場合も, 負の場合もあるので絶対値は必要。

  \(|z_1||z_2|\geq +|\langle z_1,z_2 \rangle | \geq -|\langle z_1,z_2 \rangle |\)
  \(|z_1||z_2|\geq \pm|\langle z_1,z_2 \rangle |\)
  \(|z_1||z_2|\geq \mp|\langle z_1,z_2 \rangle |\)・・・ 移項して \(\pm\) にしたい場合

①\(|z_1\pm z_2|\leq |z_1|+|z_2|\) の証明

・\((|z_1|+|z_2|)^2-|z_1\pm z_2|^2\)
 \(=|z_1|^2+2|z_1||z_2|+|z_2|^2-|z_1\pm z_2|^2\)
 \(=x_1^2+y_1^2+2\sqrt{x_1^2+y_1^2}\sqrt{x_2^2+y_2^2}+x_2^2+y_2^2-(x_1\pm x_2)^2-(y_1\pm y_2)^2\)
 \(=\cancel{x_1^2}+\cancel{y_1^2}+2\sqrt{x_1^2+y_1^2}\sqrt{x_2^2+y_2^2}+\cancel{x_2^2}+\cancel{y_2^2}\)
   \(-(\cancel{x_1^2}\pm 2x_1x_2+\cancel{x_2^2})-(\cancel{y_1^2} \pm 2y_1y_2 +\cancel{y_2^2})\)
 \(=2\left\{\sqrt{x_1^2+y_1^2}\sqrt{x_2^2+y_2^2}\pm (x_1x_2 + y_1y_2)\right\}\)
 \(=2\{|z_1||z_2|\pm \langle z_1,z_2\rangle\} \geq 0\)

 \(\therefore |z_1|+|z_2| \geq |z_1\pm z_2|\)

②\(||z_1|-|z_2|| \leq |z_1\pm z_2|\) の証明

・\(|z_1\pm z_2|^2 - ||z_1|-|z_2||^2\)
 \(=(x_1\pm x_2)^2+(y_1\pm y_2)^2-\left(\sqrt{x_1^2+y_1^2}-\sqrt{x_2^2+y_2^2}\right)^2\)
 \(=\cancel{x_1^2}\pm 2x_1x_2+\cancel{x_2^2}+\cancel{y_1^2}\pm 2y_1y_2+\cancel{y_2^2}\)
   \(-(\cancel{x_1^2}+\cancel{y_1^2}-2\sqrt{x_1^2+y_1^2}\sqrt{x_2^2+y_2^2}+\cancel{x_2^2}+\cancel{y_2^2})\)
 \(=2\left\{\sqrt{x_1^2+y_1^2}\sqrt{x_2^2+y_2^2}\pm (x_1x_2+y_1y_2)\right\}\)
 \(=2\{|z_1||z_2|\pm\langle z_1,z_2\rangle\} \geq 0\)

 \(\therefore |z_1\pm z_2| \geq ||z_1|-|z_2||\)